岁岁中文

字:
关灯 护眼
岁岁中文 > 为了能减刑,我带兔子飞上天 > 第1019章 赢了?

第1019章 赢了?

第1019章 赢了? (第1/2页)

【红桃K挑战项目--芝诺的乌龟】
  
  【挑战限时:无限!】
  
  【时间比例:1:31,536,000‬】
  
  【挑战背景介绍:公元前5世纪,希腊数学家、哲学家芝诺先生提出一个有趣的理论,他说如果让一只行动缓慢的乌龟和英雄阿喀琉斯进行长跑比赛。在比赛没有终点的情况下,乌龟站在阿喀琉斯前方100米处起跑,阿喀琉斯永远无法追上乌龟……】
  
  【挑战方式:所有参加挑战的选手化身为英雄阿喀琉斯的分身之一,在挑战开始后,进入不同的空间维度进行不同的比赛,以超过芝诺的乌龟为最终获胜条件。】
  
  【挑战规则1:芝诺的乌龟领先100米起跑后,挑战者方能开始追赶。】
  
  【挑战规则2:如挑战者中途因故停止追赶,比赛自动终止,选手丧失挑战资格。】
  
  【挑战规则3:本场挑战时间无限,若挑战者永远无法追上芝诺的乌龟,则永远无法获得挑战胜利。】
  
  【挑战规则4:挑战者在本场挑战中,理论上拥有无限体力,芝诺的乌龟同样永不停歇。】
  
  【挑战规则5:……】
  
  【……】
  
  一大长串的挑战规则,让王陆翔等人听的目瞪口呆。
  
  什么玩意儿?
  
  红桃K挑战卡牌,竟然是流传千古的著名悖论……
  
  芝诺的乌龟?
  
  不愧是噩梦难度的挑战,不愧是小丑卡牌后的最后四关!
  
  众人心中凛然,听完规则后竟完全没有通关的思路。
  
  毕竟,谁不知道。
  
  假设空间可以进行不断分割的话,芝诺饲养的这头乌龟就拥有缩地成寸的神通。
  
  虽然在没上过学的小孩子看来,追上芝诺的乌龟不过是必然会发生的事。
  
  因为只要双方的速度不一致,计算每秒行进的米数,几秒后就能超越乌龟。
  
  但在严谨的物理学中却不是这样。
  
  我们必须证明,如何才能追上芝诺的乌龟,以及乌龟不断前行和我们造成的空间差距问题。
  
  如果这样不好理解的话,龙国两千年前,一本书里同样提到这个悖论。
  
  《庄子·天下篇》说:“一尺之棰,日取其半,万世不竭!”
  
  什么意思?
  
  就是说一尺长度的木棍,每天截取其中一段,永远无法全部取完。
  
  是不是这样说,就好理解的多。
  
  你多长时间才能取完这根木棍。
  
  它和芝诺的乌龟悖论一样,只不过换成了人和乌龟的跑步比赛。
  
  想要证明人可以跑赢乌龟,和证明每天取一半的木棍,最终如何取完的方式相同。
  
  再换句话说。
  
  所有人都知道1+1=?这种简单问题的答案。
  
  它等于2!
  
  但如何证明为什么1+1=2,会难倒绝大多数的普通人。
  
  而芝诺的乌龟这个悖论,已足足困扰人类两千多年。
  
  直到微积分和普朗克常数的出现,它才被物理学和数学家彻底攻克。
  
  微积分的极限理论和普朗克常数中对量子世界的解释告诉人们。
  
  只要不断奔跑下去,在某个空间和时间的节点之内,芝诺乌龟和阿喀琉斯会处于同一起点,再往前奔跑就会超过乌龟。
  
  但,说一千道一万。
  
  红桃K卡牌挑战所考验的,便是挑战者如何寻找极限空间,如何比芝诺的乌龟抢先一步跑进普朗克常数。
  
  

(本章未完,请点击下一页继续阅读)
『加入书签,方便阅读』
热门推荐
都市隐龙 我家超市通异界 女神的上门狂婿 神雕之九转阴阳 大航海之仙道 神级高手在都市 寒门巨子 奶包四岁半:下山后七个哥哥团宠我 不科学御兽 隋末之大夏龙雀